نجوم
ماهاز ویکی‌پدیا، دانشنامهٔ آزادپرش به: ناوبری, جستجو برای دیگر کاربردها، ماه (ابهام‌زدایی) را ببینید. ماه قطر استوایی ۳۴۷۶ کیلومتر فشردگی دو قطب ۰.۰۰۲ کیلومتر ثقل سطحی در مقایسه با زمین(۱) ۰.۱۶۵ سرعت گریز ۲.۳۷ کیلومتر بر ثانیه تمایل محور نسبت به سطح مدار آن ۱.۵۳ درجه سطح ۳۸ میلیون کیلومتر مربع دما منفی ۱۷۳ (شب) مثبت ۱۱۷ (روز) زمان گردش دور زمین ۲۷ روز و ۷ ساعت و ۴۳ دقیقه مرتفع ترین قله ۱۱۳۵۰ متر ماه تنها قمر طبیعی سیارهٔ زمین و پنجمین قمر طبیعی بزرگ در منظومه خورشیدی در میان ۱۷۳ ماه موجود در این منظومه است. قطر کره ماه یک‌چهارم کره زمین است و هیچ سیاره دیگری در منظومه خورشیدی، نسبت به اندازهٔ خود ماهی به این بزرگی ندارد.[۱] انسان‌ها از قدیم از کره ماه و چرخش منظم آن برای گاهشماری، به‌ویژه در کشاورزی، بهره می‌گرفتند، مسافران و دریانوردان نیز از نور و حضور ماه برای جهت‌یابی و ناوبری استفاده می‌کردند؛ ماه هم‌چنین در اسطوره‌های اقوام حضور زیادی دارد و در برخی فرهنگ‌ها حتی آن را به عنوان یک ایزد پرستش می‌کرده‌اند. گرانش (جاذبه) ماه باعث به‌وجود آمدن جزر و مد آب‌های کره زمین می‌شود و گرانش کره ماه هم‌چنین باعث باثبات ماندن محور گردش زمین به‌دور خود می‌شود که در صورت عدم وجود ماه، انحراف محوری زمین مرتبا تغییر می‌کرد و این امر باعث آشفته شدن آب و هوا و فصل‌ها در زمین می‌شد.[۱] نیم‌کره‌ای از ماه به طور دائمی رو به زمین قرار دارد که سمت پیدای ماه نامیده می‌شود. نیمه پنهان ماه را سمت پنهان ماه می‌نامند. هر روز قمری به اندازه ۱۷.۳ روز زمینی طول می‌کشد.[۱] ماه هر سال ۲ سانتیمتر از زمین دور می‌شود. ماه نزدیکترین جرم آسمانی به زمین است و کره ماه در حدود سی‌برابر قطر زمین از زمین فاصله دارد. میانگین فاصله ماه تا زمین ۳۸۴٬۴۰۳ کیلومتر و قطر ماه ۳٬۴۷۶ کیلومتر است. به خاطر این نزدیکی فاصله، ماه در آسمان شب تقریبا به اندازه خورشید دیده می‌شود و گاه با گذر از جلوی خورشید باعث خورشیدگرفتگی نیز می‌شود. مَهتاب نوری است که از خورشید آمده و از سطح ماه رو به کره زمین بازتابانده شده. نور تقریباً در مدت ۱٫۳ ثانیه فاصله بین زمین تا ماه را طی می‌کند. نشانهٔ نجومی ماه ☾ است. سفر به ماه با فناوری‌های کنونی سه روز به‌درازا می‌کشد[۱] و ماه تنها کره خارج از زمین است که انسان‌ها بر آن گام نهاده‌اند. در سال ۱۹۶۹ سازمان ناسا اعلام کرد که نخستین فضانوردان به نام‌های نیل آرمسترانگ و باز آلدرین در قالب پروژه آپولو بر سطح ماه فرود آمدند. جو کره ماه نسبت به جو زمین بسیار رقیق و ناچیز است و به این خاطر صدا در جو ما منتقل نمی‌شود و سطح ماه مکانی خاموش و بی‌صدا است. فقدان جو واقعی به این معنی است که در سطح ماه مولکول‌های هوا نیز وجود ندارند تا نور خورشید را بپراکنند و و با این کار در آسمان ماه ایجاد رنگ کنند؛ به این خاطر آسمان ماه همیشه سیاه است.[۱] نبود جو هم‌چنین باعث می‌شود که شهاب‌سنگ‌های کوچک و بزرگ که پیش از رسیدن به زمین در هوا می‌سوزند در آسمان ماه نسوزند و به آسانی به سطح ماه رسیده و با شدت به آن اصابت کنند.[۱] خاک ماه تقریبا یک‌رنگ و در همه‌جا خاکستری‌رنگ است و با گرد و غباری پوشیده شده که اصطلاحا خاکه‌سنگ نامیده می‌شود. ماه در زمین خود صفحات زمین‌ساختی ندارد و از آن‌جا که در کره زمین کوه‌ها در نتیجه فشرده شدن این صفحات به هم پدید می‌آیند در ماه پدیده کوهزایی منشا زیرسطحی ندارد و تنها بر اثر برخورد شهاب‌ها است که ماه دارای پستی و بلندی‌هایی شده‌است.[۱] انسان تاکنون ۷۳ مأموریت فضایی به سوی ماه انجام داده‌است. تغییرات دمایی زیاد بر سطح ماه، تابش‌های زیانمند کیهانی و بارش انواع شهاب‌سنگ‌ها اسکان انسان در ماه را با دشواری‌هایی روبه‌رو می‌کند. پژوهشگران آژانس فضایی ژاپن موفق به کشف حفره‌ای گدازه‌ای در کره ماه شده‌اند که به باور آن‌ها این حفره مکانی مناسب برای ساخت اقامتگاه‌های فضایی در آینده‌ای نه چندان دور خواهد بود.[۲] محتویات [نهفتن] ۱ شرایط ماه ۲ شکل گیری ماه ۳ چرا ماه به روی زمین سقوط نمی‌کند ۴ دهانه‌ها و دریاوارها ۵ هلال و بدر چگونه تشکیل می‌شود ۶ گام‌های ماه ۷ برنامه‌های اکتشافی ۸ پروژه‌های ماه در ایران ۹ ماه در اساطیر ۱۰ منابع ۱۱ جستارهای وابسته ۱۲ پیوند به بیرون ۱۳ منابع شرایط ماه [ویرایش] تصویر ماه از زمین تصویری از ماه به صورت ناکامل و هلالیبر خلاف زمین، ماه نه دارای آب است، نه هوا، نه زندگی و نه میدان مغناطیسی. نمی‌توان گفت که ماه کاملاً غیر فعال است، زیرا «ماه‌لرزه» را باید نشانه‌ای از وجود نوعی حرکت در درون آن دانست. قطعاً ماه در دوران گذشته، آتشفشانهایی داشته است؛ اما غالب حفره‌هایی را که در آن می‌بینیم، نتیجه اصابت سنگهای آسمانی در اولین روزهای شکلگیری آن است. بعضی از این حفره‌ها عظیم اند عمق حفره نیوتون ۸٬۰۰۰ متر است. هنگامی که سفینه فضایی شوروی به نام لونا ۳ از پشت ماه عکس گرفت، دانشمندان دیدند که روی پنهان ماه درست مانند روی آشکار آن نیست. در آنجا، تعداد حفره‌ها بسیار بیشتر بود؛ اما به طور کلی، از حفره‌های روی آشنای ماه کوچک‌تر بودند. شکل گیری ماه [ویرایش] دهانه‌های برخوردی بر سطح ماه.ماه و زمین بطور هم‌زمان و حدود ۴.۵ میلیارد سال پیش شکل گرفتند. جرم ماه ۱/۸۱ام جرم زمین است. اینکه ماه دقیقا چگونه بوجود آمده هنوز معلوم نشده‌است. ممکن است همراه با زمین در اوایل شکل گیری منظومه شمسی شکل گرفته باشد، یا اینکه بعدها جذب میدان جاذبه شده و در مدار قرار گرفته‌است. نظریه‌ای که بیش از سایر نظریه‌ها پذیرفته شده این است که ماه از برخورد یک سیارک به اندازه مریخ به زمین بوجود آمده‌است. اثرات متقابل جاذبه‌های زمین و ماه بر همدیگر باعث افزایش مدت حرکت وضعی هر دو جسم شده‌است. به‌عنوان مثال، زمانی مدت حرکت وضعی زمین (طول شبانه روز) فقط ۱۰ ساعت بود، اما این زمان به ۲۴ ساعت کنونی افزایش یافته‌است. اگر این روند همچنان ادامه پیدا کند، طول ماهها به ۴۷ روز خواهد رسید. اما مقیاس زمانی این روند بسیار طولانیتر از طول عمر خورشید بوده، بنابر این منظومه شمسی عمر کافی برای رسیدن به آن زمان را نخواهد داشت. قطر خورشید ۴۰۰ برابر قطر ماه و فاصله آن از زمین نیز ۴۰۰ برابر فاصله ماه از زمین است. این اتفاق باعث می‌شود تا هم ماه و هم خورشید به یک اندازه به نظر رسیده و در هنگام کسوف تمام سطح خورشید گرفته شود. چرا ماه به روی زمین سقوط نمی‌کند [ویرایش]زمین با نیروی گرانش ماه را به سوی خود می‌کشد. اگر انسان ماه را که در حقیقت بی وقفه به دور سیاره ما می‌چرخد، از گردش باز می‌داشت، ماه فقط برای مدت کوتاهی ثابت می‌ایستاد، آنگاه با سرعتی فزاینده به سمت زمین می‌شتافت و در نهایت با آن برخورد می‌کرد. البته این عمل میسر نیست. ماه از همان زمانهای اولیه با سرعتی برابر ۳۶۵۹ کیلومتر در ساعت به دور زمین در حال گردش بوده‌است. در اثر این حرکت گردشی، یک نیروی گریز از مرکز به سمت خارج ایجاد می‌شود، که درست به اندازه نیروی گرانش زمین که به سمت داخل کشش دارد، است. این دو نیروی مخالف، اثر یکدیگر را بطور متقابل خنثی می‌کنند، به نحوی که ماه هموراه بر مدار خود باقی می‌ماند. دهانه‌ها و دریاوارها [ویرایش] تابلویی از کره ماه و خورشید متعلق به قرن هفدهم میلادی.بیش از ۳.۵ میلیارد سال پیش، سطح ماه به شدت توسط شهاب‌سنگ‌ها بمباران شد و گودال‌های زیادی به نام دهانه در سطح آن بوجود آمدند. وسعت بعضی از این دهانه‌های برخوردی به ۳۰۰ کیلومتر (۱۸۵ مایل) می‌رسد که توسط دیواره‌هایی از کوههای سنگی که بر اثر برخورد شهاب سنگها بوجود آمده‌اند، محصور شده‌اند. بعضی از گودالها، دیوارهای تراس دار یا حلقه‌های کوهستانی هم مرکز داشته و در اکثر آنها قله‌هایی نیز وجود دارند. دهانه‌هایی که رگه‌های بزرگ و درخشان توف نام دارند، بسیار تماشایی هستند. تعدادی از گودالهای بزرگ‌تر از گدازه آتشفشانی پر شده و دریاهایی در سطح ماه بوجود آورده‌اند. سوی رو به زمین کره ماه (سوی نزدیک)، ظاهری بسیار متفاوت نسبت به سوی دور آن دارد. علت آن اینست که پهنه‌های زیادی از این سوی ماه بر اثر فعالیت‌های آتشفشانی با گدازه‌های تیره‌رنگ پوشیده شده‌اند و آبگیروارهای گوناگونی را بوجود آورده‌اند ولی سوی دور ماه همچنان به شکل قدیم یعنی آکنده از گودال باقی مانده‌است.[۳] هلال و بدر چگونه تشکیل می‌شود [ویرایش] لیبرایسون کره ماه در یک چرخش ماهانهخورشید خود می‌درخشد، ماه را از این رو می‌بینیم که خورشید به آن می‌تابد. اگر آن روی ماه که به سوی ماست، بطور کامل مورد تابش خورشید قرار گیرد، ما ماه را بصورت قرص کامل و به عبارت دیگر در حالت بدر مشاهده می‌کنیم. اگر نور خورشید فقط قسمتی از آن روی ماه را که بسوی ماست در بر گیرد، ما ماه را بر حسب میزان تابش نور بصورت هلال باریک نوری، نیم قرص و یا به صورت یک گلوله تقریباً گرد نورانی می‌بینیم. این پدیده‌های نوری را فازها یا صورتهای مختلف ماه می‌نامند. هنگامی که ماه در جهت تابش خورشید قرار گیرد، دیده نمی‌شود، زیرا در تابش شدید خورشید محو می‌گردد و علاوه بر این، آن روی ماه که بسوی ماست مورد تابش واقع نمی‌گردد. این وضعیت را ماه نو می‌نامیم. اکنون ماه بر روی مدار خود به حرکت ادامه می‌دهد و پس از چند روز به طور محسوسی در سمت چپ و یا در شرق خورشید واقع می‌شود. در این وضعیت قسمت کوچکی از نیمه رو به زمین ماه، تحت تابش نور خورشید قرار می‌گیرد. در این دوران ماه را در اوایل شب بصورت داس باریکی که البته روز به روز بر قطر هلال آن افزوده می‌شود، مشاهده می‌کنیم، زیرا در این وضع ماه بعد از خورشید غروب می‌کند. تقریباً یک هفته پس از ماه نو، از دید ناظر زمینی، ماه دقیقا از پهلو مورد تابش نور خورشید واقع می‌شود. در این حالت انسان نیمی از ماه را تاریک و نیم دیگر را روشن می‌یابد؛ این وضعیت یک‌چهارم نخست نامیده می‌شود. دوباره یک هفته بعد، ماه از دید این ناظر، دقیقا در مقابل خورشید قرار می‌گیرد. در این حالت ماه به صورت قرص کامل نورانی می‌شود، که به آن بدر (یا در اصطلاح عامیانه ماه شب چهاردهم) می‌گویند. از این حالت به بعد از قطر قسمت نورانی ماه کاسته می‌شود. تقریباً هفت روز پس از بدر، دوباره یک‌چهارم دوم حادث می‌شود. ماه در این حالت از دید ناظر زمینی اکنون در سمت راست یا در غرب خورشید قرار دارد و به عبارت دیگر قبل از طلوع خورشید در آسمان صبحگاهی پدیدار می‌شود، تا بالاخره دوباره به وضعیت ماه نو می‌رسد. گام‌های ماه [ویرایش] ماموریت آپولو ۱۲همیشه ۵۰ درصد سطح ماه در معرض نور خورشید قرار دارد. میزان ناحیه روشن ماه، به موقعیت ماه نسبت به زمین و خورشید بستگی دارد. اندازه ناحیه قابل رویت، از کاملاً تاریک تا ماه کامل متغیر است. این دوره کامل هشت مرحله دارد که اهله ماه نامیده می‌شوند. چرخه گام‌های ماه، هر ۲۹.۵۳ روز کامل می‌شود. برنامه‌های اکتشافی [ویرایش]بدلیل مشکلات بسیار زیادی که سفر به ماه دارد تاکنون بشر نتوانسته است به این قمر سفر کند. سازمان فضایی ایالات متحده پس از شکست های پیاپی در رقابت های فضایی در برابر شوروی و ثبت تقریبا همه رکورد های فضایی به نام شوروی در اقدامی بی سابقه ادعا کرد که قصد دارد با استفاده از فضاپیماهایی موسوم به آپولو انسان را بر سطح ماه پیاده کند و برگرداند. فضاپیمای آپولو11 در سال 1969 در برابر دیدگان مردم و رسانه ها به فضا پرتاب شد و چند روز بعد تصاویری از قدم گذاشتن سرنشینان آپولو11 بر سطح ماه و ماه نوردی های آنان در شبکه های تلویزیونی منتشر شد. بسیاری از اخترشناسان و دانشمندان صنایع فضایی مدعی هستند که سفر به سطح ماه نه تنها با امکانات و فناوری های آن دهه ها ممکن نبوده بلکه با فناوری های امروزی نیز بسیار مشکل و حتی غیر ممکن است. آنها مدعی هستد که فضاپیماهای آپولو فقط در مدار زمین در حال گردش بوده اند و همه تصاویری که ادعا می شود از سطح ماه ضبط شده اند در استودیوهایی در روی زمین تصویر برداری شده است. پروژه‌های ماه در ایران [ویرایش]ایرانی‌ها اگرچه تا کنون به ماه، فضا پیما ارسال نکرده‌اند، اما فعالیت های رصدی زیادی در این زمینه انجام داده‌اند. تصویر برداری از ماه آن هم با زمینه‌های هنری و نجومی از طرفداران زیادی در ایران برخوردار است. گروه دیگری ماه را هموراه زیر نظر دارند و هر رویدادی را که به نحوی با آن در ارتباط باشد از نظر دور نمی‌دارند. تعداد بسیار زیادی هم هلال اول و آخر ماه را برای تصحیح تقویمهای اسلامی به صورت دائم رصد می‌کنند(پایگاه رویت هلال). در این میان رصدخانه کوثر.1 هم با همکاری ماه شناسان داخلی و خارجی کاوشگر مجازی ماه را به زبان فارسی به عنوان دائره المعارف تصویری ماه اجرا نموده‌است. ماه در اساطیر [ویرایش]
شنبه 6 اسفند 1390برچسب:, :: 20:14 :: نويسنده : امیر محمد توده زارع

 



 

ستارهاز ویکی‌پدیا، دانشنامهٔ آزادپرش به: ناوبری, جستجو یک ناحیه تولید ستارگان در ابر ماژلانی بزرگ، تصویر از اسا و ناسابرای دیگر کاربردها، ستاره (ابهام‌زدایی) را ببینید. ستاره یک گوی بسیار داغی از پلاسما است که به خاطر نیروی گرانش در یک جا متمرکز شده‌است. بعضی از آنها از جمله پدیده‌های آسمانی اند که بر خلاف سیارات خود منبع انرژی محسوب می‌شود.[۱] و خورشید به عنوان نزدیکترین ستاره، منبع بسیار از انرژی‌های روی زمین است. چگالی گازهای آنها بعلت فشار زیاد از چگالی گازها در سطح زمین زیادتر است. آنها در فضا حرکت می‌کنند اما بعلت محسوس نبودن ظاهری این حرکت در فاصله بسیار زیاد، نسبت به سیارات به ثوابت مشهورند. رصد آنها در موجب به وجود آمدن صور فلکی شده‌است و برای فهرست کردن آنها کاتالوگ‌های ستاره‌ای به وجود آمده‌است. ستارگان انواع مختلفی دارند از پیش‌ستاره‌ها که هنوز فشار کافی برای همجوشی هسته‌ای را ندارند تا ستاره‌های نوترونی که دوره تولید انرژی آنها پایان یافته‌است. نزدیکترین ستاره به زمین بعد از خورشید پروکسیما قنطورس است که در ۴٫۳ سال نوری از زمین قرار دارد. واژه ستاره در زبان پهلوی به ریخت stârag و اَختَر آمده بود. محتویات [نهفتن] ۱ نام‌گذاری ۲ اندازه‌گیری ۳ انرژی ۴ سرگذشت ۴.۱ زایش ۴.۲ عمر ۵ ستاره متغیر ۶ رده‌بندی ستارگان ۷ تجمع ستارگان ۸ نظر پیشنیان ۹ منابع ۱۰ پیوند به بیرون ۱۱ جستارهای وابسته [ویرایش] نام‌گذاریدر سال ۱۶۰۳ میلادی ستاره‌شناس آلمانی یوهان بایر ۱۶ نقشهٔ صورت‌های فلکی را ترسیم کرد و به هریک‏ از ستارگان یکی از حروف الفبای یونانی را اختصاص داد، به این ترتیب که نخستین‏ حرف الفبا ویژه روشن‌ترین ستاره آن صورت باشد و به همین ترتیب از حرفی به حرف‏ دیگر برسد و اگر شمارهٔ ستارگان صورتی از عدد ۲۴ شمارهٔ حروف الفبای یونانی تجاوز کرده، باقی ستارگان را با حروف الفبای لاتینی نمایانده‌است.[۲] پس از آن‌که با اکتشاف‏ دوربین‌های بزرگ شمارهٔ ستارگان هر صورت فلکی رو به فزونی گذاشته، اخترشناسان از نشانه‌های دیگری، ازجمله اعداد، برای شناساندن بازماندهٔ ستارگان هر صورت استفاده کردند. نخستین کسی که چنین کرد ستاره‌شناس انگلیسی جان فلمستید در جدول مشهور ستارگان‏ خویش بود که چاپ آن در ۱۷۲۵ م پایان پذیرفت، که در آن نزدیک سه هزار ستاره با تعیین طول و عرض آنها آمده‌است. امروزه هر زمان از جدول او انتخابی شود، ستاره مورد نظر را با عدد آن جدول می‌‏نمایند و پیش از آن حرف Fl را که اشاره به نام فلمستید است قرار می‏‌دهند.[۳] [ویرایش] اندازه‌گیریبه علت بزرگ بودن ستارگان بیان ابعاد آنها در واحدهای اس‌آی کار دشواری است و به همین دلیل اندازه دیگر ستارگان را بر اساس اندازه خورشید بیان می‌کنند: جرم خورشید: kg[۴] درخشندگی خورشید: وات[۴] شعاع خورشید: متر[۵] [ویرایش] انرژیانرژی ستارگان ناشی از واکنش‌های هسته‌ای است. ماده اصلی تشکیل دهنده ستارگان رشته اصلی، هیدروژن است. هیدروژن موجود در ستارگان طی فرآیند همجوشی هسته‌ای به هلیوم تبدیل می‌شود و در حین این واکنش گرما و نور بسیار زیادی تابش می‌یابد. [ویرایش] سرگذشت نمودار هرتسپرونگ-راسلنوشتار اصلی: تکامل ستارگان [ویرایش] زایشنوشتار اصلی: زایش ستارگان تولد ستارگان در ناحیه‌هایی از فضا که نام سحابی دارند صورت می‌گیرد بدین صورت که ملکول‌های هیدروژن که در ناحیه‌های بزرگی از فضا پراکنده هستند آرام آرام به هم نزدیک می‌شوند و زمانی که ستاره به تعادل هیدرودینامیکی برسد پیش‌ستاره و زمانی که بتواند همجوشی هسته‌ای انجام دهد تا انرژی خود را آزاد کند یک ستاره رشته اصلی محسوب می‌شود. حداقل جرم ستاره برای سوزاندن هیدروژن ۰٫۱ جرم خورشید، سوزاندن هلیوم ۰٫۴ جرم خورشید، سوزاندن کربن ۵ برابر جرم خورشید و سوزاندن نئون نیاز به جرمی برابر ۸ جرم خورشید دارد. [ویرایش] عمرنوشتار اصلی: عمر ستارگان هر ستاره دارای دوره عمر می‌باشد که بسته به نوع ستاره متفاوت است. ستارگان حجیم با نور بیشتر و حرارت زیاد عمر کوتاهتری نسبت به ستارگان کم نور و کوچک دارند. پایان عمر هر ستاره بستگی به میزان ذخیره هیدروژن در آن دارد. زمانی که هیدروژن درون ستاره‌ای پایان یابد هلیوم تبدیل به سوخت اصلی می‌شود و می‌سوزد. سوختن هلیوم سبب ایجاد گرمای بسیار زیادی می‌شود که تا آن زمان در ستاره پیش نیامده بوده‌است (این مراحل تا سوزاندن سیلیسیم پیش می‌رود زیرا تولید آهن که از همجوشی سیلیسیم به وجود می‌آید فرایندی گرماگیر و نه گرماده‌است) این گرمای زیاد سبب انبساط ستاره می‌شود و حجم آن را چند برابر می‌کند. مثلاً اگر زمانی خورشید شروع به سوزاندن هلیوم کند آنقدر انبساط می‌یابد که زمین در حجم زیاد آن محو می‌شود. این انبساط تا سر حد مریخ ادامه پیدا کرده و سپس متوقف می‌شود. مرحلهٔ بعدی بستگی به نوع ستاره دارد. ستارگان عظیم پس از این مرحله آنقدر انبساط یافته‌اند که دیگر نمی‌تواند جاذبه‌ای روی سطوح بیرونی خود داشته باشند. پس از آن این ستارگان منفجر شده و تبدیل به نواختر می‌گردند. هرچه ستاره بزرگ‌تر باشد میزان نواختر بزرگ‌تر خواهد بود. غولها تبدیل به ابرنواختر می‌گردند. پس از آن این ستاره‌ها بسته به نوع نواختر ادامه عمر می‌دهند. نواختران معمولی تبدیل به کوتوله شده و عمری طولانی را آغاز می‌کنند. اما ابر نواختران در خود فرو می‌ریزند و بسته به جرم هسته آنها ستارگان بسیار کوچکی و چگالی به نام ستارگان نوترونی بوجود می‌آورند. این ستارگان عمر طولانی دیگری در پیش خواهند داشت. بعد از آن کوتوله‌ها یا کوتوله‌های سفید تبدیل به کوتوله سیاه شده و تا آخر جهان زندگی خواهند کرد. اگر جرم آن بسیار زیادتر از این موارد باشد تبدیل به سیاهچاله می‌شود. نوع سوخت دمای سطح (میلیون کلوین) چگالی (kg/cm۳) مدت زمان سوزاندن (سال) H ۳۷ ۰٫۰۰۴۵ ۸٫۱ میلیون He ۱۸۸ ۰٫۹۷ ۱٫۲ میلیون C ۸۷۰ ۱۷۰ ۹۷۶ Ne ۱٬۵۷۰ ۳٬۱۰۰ ۰٫۶ O ۱٬۹۸۰ ۵٬۵۵۰ ۱٫۲۵ S/Si ۳٬۳۴۰ ۳۳٬۴۰۰ ۰٫۰۳۱۵[۶] [ویرایش] ستاره متغیرنوشتار اصلی: ستاره متغیر تعادل ستاره زمانی بدست می‌آید که دو نیروی همجوشی (رو به بیرون) و گرانش (رو به درون) با هم برابر باشند اما هنگامی که یک ستاره به اواخر عمر خود می‌رسد و همجوشی آن دچار تغییراتی می‌شود روندی پیش می‌آید که گاهی همجوشی نیروی بیشتری وارد می‌کند و ستاره بزرگ و پرنور می‌شود و گاهی گرانش غلبه کرده و ستاره کوچک و کمنور می‌شود به این ستارگان ستارگان متغیر می‌گویند که آنها دارای انواع زیادی هستند مانند متغیر دلتا قیفاووسی، متغیر دلتا سپری، متغیر آرآر شلیاقی، متغیر میرا و متغیر نامنظم [ویرایش] رده‌بندی ستارگاندمای سطحی برای کلاس‌های مختلفی از ستارگان[۷] کلاس دما ستاره نمونه O ۳۳٬۰۰۰ K یا بیشتر زتا مارافسای B ۱۰٬۵۰۰–۳۰٬۰۰۰ K پای شکارچی A ۷٬۵۰۰–۱۰٬۰۰۰ K کرکس پرنده F ۶٬۰۰۰–۷٬۲۰۰ K شعرای شامی G ۵٬۵۰۰–۶٬۰۰۰ K خورشید K ۴٬۰۰۰–۵٬۲۵۰ K اپسیلون هندی M ۲٬۶۰۰–۳٬۸۵۰ K پروکسیما قنطورس نوشتار اصلی: رده‌بندی ستارگان ستارگان بر اساس رنگ (که ناشی از دمای سطحی است.) به دسته‌های O, B, A, F, G, K, M تقسیم می‌شوند. [ویرایش] تجمع ستارگانبه گروهی از ستارگان که با نیروی گرانش به هم پیوستگی داشته باشند خوشه ستاره‌ای می‌گویند که در دو دسته خوشه ستاره‌ای باز و خوشه ستاره‌ای کروی تقسیم می‌شوند. خوشه‌های ستاره‌ای کروی در مرکز کهکشان‌ها یافت می‌شوند و معمولا عمر بسیار بیشتری دارند. اما اگر فقط دو ستاره در کنار هم باشند به آن ستاره دوتایی گفته می‌شود. [ویرایش] نظر پیشنیانابن سینا ستاره را چنین تعریف می‌کند: جسمی است بسیط، کروی که جایگاه طبیعی آن در فلک است. روشنی می‌بخشدو قابل کون و فساد نیست. بر فراز مرکز، بی‌آنکه بر آن احاطه داشته باشد در حرکت است.[۸]
شنبه 6 اسفند 1390برچسب:, :: 20:9 :: نويسنده : امیر محمد توده زارع
اخترشناسیاز ویکی‌پدیا، دانشنامهٔ آزادپرش به: ناوبری, جستجو بخشی از نوشتارها در مورد علم علوم طبیعی[نمایش]اخترشناسی اخترفیزیک · کیهان‌شناسی اخترشناسی کهکشانی · زمین‌شناسی سیاره‌ای سیاره‌شناسی · اخترشناسی ستارگان زیست‌شناسی کالبدشناسی · اخترزیست‌شناسی · بیوشیمی مهندسی زیستی · بیوفیزیک عصب‌شناسی رفتاری · بیوتکنولوژی گیاه‌شناسی · زیست‌شناسی سلولی · سرمازیست‌شناسی زیست‌شناسی رشد بوم‌شناسی · اتنوبیولوژی زیست‌شناسی تکاملی (مقدمه) ژنتیک (مقدمه) پیری‌شناسی · ایمنی‌شناسی · لیمنولوژی زیست‌شناسی دریایی · میکروب‌شناسی زیست‌شناسی مولکولی · عصب‌شناسی دیرین‌شناسی · انگل‌شناسی · فیزیولوژی رادیوبیولوژی · زیست‌شناسی خاک زیست‌شناسی نظری · سم‌شناسی · جانورشناسی شیمی نظریه‌های واکنش اسید-باز · کیمیاگری شیمی تحلیلی · اخترشیمی بیوشیمی · کریستالوگرافی شیمی محیطی · علوم غذا زمین‌شیمی · شیمی سبز شیمی غیرآلی · مهندسی و علم مواد فیزیک مولکولی · شیمی هسته‌ای شیمی آلی · فوتوشیمی شیمی‌فیزیک · رادیوشیمی شیمی وضعیت جامد · استروشیمی شیمی فوق‌مولکولی علوم سطح · شیمی نظری علوم زمین علوم جوی · بوم‌شناسی علم محیط زیست · ژئودزی زمین‌شناسی · زمین ریخت‌شناسی ژئوفیزیک · یخ‌شناسی · آب شناسی لیمنولوژی · کانی‌شناسی · اقیانوس‌سنجی اقلیم‌شناسی · پالینولوژی جغرافیای فیزیکی · خاک‌شناسی فضاشناسی فیزیک فیزیک کاربردی · فیزیک اتمی فیزیک محاسباتی فیزیک ماده چگال فیزیک تجربی · مکانیک فیزیک ذرات · فیزیک پلاسما مکانیک کوانتومی (مقدمه) مکانیک جامدات · فیزیک نظری ترمودینامیک · انتروپی نسبیت عام · نظریه-ام نسبیت خاص علوم اجتماعی و علوم رفتاری[نمایش]مردم‌شناسی · باستان‌شناسی جرم‌شناسی · جمعیت‌شناسی اقتصاد · جغرافیا تاریخ · زبان‌شناسی علوم سیاسی · روان‌شناسی جامعه‌شناسی علوم کاربردی[نمایش]مهندسی مهندسی کشاورزی · مهندسی هوافضا · مهندسی پزشکی · مهندسی شیمی · مهندسی عمران مهندسی کامپیوتر · مهندسی برق · مهندسی محافظت از آتش مهندسی ژنتیک · مهندسی صنعتی · مهندسی مکانیک · مهندسی نظامی مهندسی معدن · مهندسی هسته‌ای · مهندسی نرم‌افزار علوم سلامت مهندسی زیستی · دندانپزشکی اپیدمیولوژی · مراقبتهای بهداشتی · پزشکی پرستاری · داروسازی · مددکاری اجتماعی دامپزشکی علوم صوری[نمایش]علوم رایانه منطق ریاضیات آمار عنوانهای مربوط[نمایش]علوم انسانی میان‌رشته‌ای فیزیک کاربردی · هوش مصنوعی زیست‌اخلاق · بیوانفورماتیک · زیست‌جغرافیا مهندسی پزشکی · آمارزیستی علوم شناختی · زبان‌شناسی محاسباتی علوم فرهنگی · سایبرنتیک مطالعات محیط‌زیست · قوم‌شناسی روان‌شناسی تکاملی · جنگلداری سلامتی · کتابداری · منطق زیست ریاضی · فیزیک ریاضی مدل‌سازی · مهندسی عصبی عصب‌شناسی · اقتصاد سیاسی مطالعات علم و فناوری مطالعات علمی · نشانه‌شناسی · سوسیوبیولوژی نظریه سامانه‌ها · میان‌رشته‌ای برنامه‌ریزی شهری تاریخ علم فلسفه علم روش علمی علم حاشیه‌ای شبه علم ن • ب • و عکس گرفته شده از سحابی خرچنگ توسط تلسکوپ فضایی هابلکلاس‌ درس برخطی مربوط به موضوع این مقاله در کلاس‌های درس اینترنتی در بخش اخترشناسی موجود است. بخشی از کلاس‌های درس اینترنتی در مورد اخترشناسی اخترشناسی فهرست[نمایش]مقدمه‌ای بر اخترشناسی - پیوند- از دانشگاه برکلی (زبان انگلیسی) مقدمه‌ای بر اخترفیزیک - پیوند- از دانشگاه ییل (زبان انگلیسی) ن • ب • و اخترشناسی (Astronomy) علم بررسی موقعیت، تغییرات، حرکت و ویژگی‌های فیزیکی شیمیایی پدیده‌های آسمانی از جمله ستارگان، سیارات، ستاره‌های دنباله‌دار‎، کهکشان‌ها و پدیده‌هایی مانند شفق قطبی و تشعشعات پس زمینه‌ای فضا می‌باشد که منشاء آنها در خارج از جو زمین قرار دارد. این رشته با رشته‌هایی مانند فیزیک، شیمی و فیزیک حرکت ارتباط تنگاتنگ دارد و همچنین با رشتهٔ فضاشناسی فیزیکی (پیدایش و تکامل جهان) ارتباط نزدیکی دارد. اگر تنها ستارگان مورد مطالعه قرار بگیرند به آن ستاره‌شناسی (Stellar Astronomy) گفته می‌شود. اخترشناسی یکی از قدیمی‌ترین علوم است. اخترشناسان در تمدن‌های اولیه بشری به دقت آسمان شب را بررسی می‌کردند و ابزارهای ساده اخترشناسی از همان ابتدا شناخته شده بودند. با اختراع تلسکوپ، تحولی عظیم در این رشته ایجاد شد و دوران اخترشناسی جدید آغاز گردید. در قرن ۲۰، رشته اخترشناسی به دو رشته اخترشناسی شهودی و فیزیک کیهان نظری تبدیل شد. در اخترشناسی شهودی به دنبال جمع آوری داده‌ها و پردازش آنها و همچنین ساخت و نگهداری ابزارهای اخترشناسی هستیم. در فیزیک کیهان نظری به دنبال کسب اطمینان از صحت نتایج به دست آمده از مدل‌های تحلیلی و تحلیل‌های کامپیوتری هستیم. این دو رشته در کنار یکدیگر رشته‌های کامل را ایجاد می‌کنند که اخترشناسی نظری نام دارد و به دنبال توصیف یافته‌های شهودی است. با استفاده از یافته‌های اخترشناسی می‌توان نظریه‌های بنیادین فیزیک مانند نظریه نسبیت عام را آزمایش کرد. در طول تاریخ، اخترشناسان آماتور در بسیاری از کشف‌های مهم اخترشناسی نقش داشته‌اند و اخترشناسی یکی از محدود رشته‌هایی است که در آن افراد آماتور نقشی بسیار فعال دارند و مخصوصاً در کشف و مشاهده پدیده‌های گذرا و محلی امیدوارکننده ظاهر شده‌اند. علم اخترشناسی مدرن را نباید با علم احکام نجوم (طالع‌بینی یا اخترگویی) مقایسه کنید چرا که در طالع‌بینی یا اخترگویی اعتقاد بر آن است که امور انسان‌ها با موقعیت اشیاء سماوی در ارتباط است. اگرچه اخترشناسی (Astronomy) و طالع‌بینی یا اخترگویی (Astrology) دو رشته‌ای هستند که منشأ یکسانی دارند اما اغلب متفکران بر این باورند که این دو رشته از هم جدا شده‌اند وتفاوت‌های بسیاری بین آنها وجود دارد.[۱] محتویات [نهفتن] ۱ تعداد آسمانها ۲ سیر تحولی و رشد ۳ انقلاب علمی ۴ مشاهدات اخترشناسی ۵ روش‌های گردآوری داده ۶ ستاره‌شناسی و مکانیک اجرام آسمانی ۷ مطالعات میان‌رشته‌ای ۸ پدیده‌های آسمانی ۹ اخترشناسی خورشید ۱۰ دانش سیارات ۱۱ اخترشناسی ستارگان (ستاره شناسی) ۱۲ اخترشناسی کیهانی ۱۳ کهکشان‌ها وخوشه‌ها ۱۴ کیهان‌شناسی ۱۵ اخترشناسی غیر حرفه‌ای (آماتوری) ۱۶ پرسش‌های بنیادین در اخترشناسی ۱۷ اسطرلاب ۱۸ جستارهای وابسته ۱۹ منابع ۲۰ پیوند به بیرون تعداد آسمانها [ویرایش]از قرنهای چهارم تا ششم پیش از میلاد مسیح، اخترشناسان یونانی پی بردند که باید بیشتر از یک سایبان (آسمان) وجود داشته باشد. چون اوضاع نسبی ستارگان ثابت، که حول زمین حرکت می‌کنند، ظاهرا تغییری نمی‌کند، اما اوضاع نسبی خورشید، ماه و پنج جسم درخشان ستاره مانند که امروزه سیارات عطارد، زهره، مریخ، مشتری و زحل می‌گویند) تغییر می‌کنند. در قرآن مجید نیز، جایی که صحبت از حقیقت آسمان می‌کند، لفظ آسمان‌های هفتگانه بکار برده می‌شود. روشهای مختلف اندازه گیری فواصل کیهانی در حدود صد و پنجاه سال پیش از میلاد، هیپارکوس، فاصله زمین تا ماه را بر حسب قطر زمین بدست آورد. وی روشی را بکار برد که یک قرن پیش از او، بوسیله جسورترین اخترشناس یونانی آریستارکوس، پیشنهاد شده بود. آریستاکوس متوجه شده بود که انحنای سایه زمین، وقتی که از ماه می‌گذرد، باید ابعاد نسبی زمین تا ماه را نشان دهد. با پذیرش این نظر و به کمک روشهای هندسی می‌توان فاصله زمین تا ماه را بر حسب قطر زمین محاسبه کرد. برای تعیین فاصله خورشید نیز، آریستاکوس، یک روش هندسی را بکار برد که از نظر تئوری درست بود. اما نیاز به اندازه گیری زاویه‌هایی چنان کوچک داشت که جز با استفاده از وسایل امروزی ممکن نبود. هر چند که ارقام وی درست نبود، اما او نتیجه گرفت که خورشید حداقل باید هفت برابر بزرگتر از زمین باشد و لذا گردش خورشید به دور زمین که در آن زمان رایج بود، غیر منطقی دانست. ستاره‌شناسان بعدی حرکات اجرام آسمانی را بر مبنای این نظریه مورد مطالعه قرار دادند که زمین ساکن است و در مرکز عالم قرار دارد. نفوذ و سلطه این نظریه تا سال ۱۵۴۳، یعنی تا زمانی که کوپرنیک کتاب خود را منتشر کرد و با پذیرش عقیده آریستاکوس، زمین را برای همیشه از مرکز جهان بودن بیرون راند، حاکم بود. یکی دیگر از روشهایی که با آن می‌توان فاصله‌های کیهانی را محاسبه کرد، استفاده از روش اختلاف منظر است. روش دیگر استفاده از مثلثات است. بطلیموس با استفاده از مثلثات توانست فاصله راه را از روی اختلاف منظر آن تعیین کند و نتیجه‌اش با رقم پیشین، که بوسیله هیپارکوس بدست آمده بود، تطبیق می‌کرد. البته امروزه روشهای مختلف دیگری که خیلی دقیقتر از روشهای فوق است، فاصله خورشید از زمین بطور متوسط تقریبا، برابر ۵‚۱۴۹ میلیون کیلومتر است. این فاصله میانگین را واحد نجومی (با علامت اختصاری A.U) می‌نامند و فاصله‌های دیگر منظومه خورشیدی را با این واحد می‌سنجند. سیر تحولی و رشد [ویرایش]با گسترش روز افزون علم و ساخت تلسکوپهای دقیق، دانشمندان، در اندازه گیری ابعاد جهان روز به روز به نتایج جدیدتری نائل می‌شدند. با ساخته شدن و گسترش این وسایل اندازه گیری، دید بشر نسبت به جهان نیز تغییر یافت. به عنوان مثال با چشم غیر مسلح تقریبا می‌توانیم در حدود ۶ هزار ستاره را ببینیم، اما اختراع تلسکوپ ناگهان آشکار کرد که این فقط جزیی از جهان است. هر چند با بوجود آمدن وسایل دقیق اندازه گیری، دانش نیز نسبت به جهان هستی، گسترش پیدا می‌کرد، اما نظریه‌های مختلفی توسط دانشمندان ارائه می‌گردد. از جمله دانشمندانی که نسبت به ارایه این نظریه‌ها اقدام کردند می‌توان به ویلیام هرشل (Wiliam Herschel)، ستاره‌شناس آلمانی‌تبار انگلیسی یا کوبوس کورنلیس کاپیتن (Jacobus cornelis kapteyn)، اخترشناس هلندی، شارل مسیر (Charles Messier) و هابل و … اشاره کرد. پایان جهان کجاست؟ سرانجام بعد از تحقیقات گسترده توسط پیچیده‌ترین تلسکوپها، دانشمندان دریافتند که: غیر از کهکشان ما، کهکشانهای دیگری نیز وجود دارد. کهکشانهایی وجود دارند که جرم آنها بیشتر از کهکشان ماست. بر اساس مقیاس جدید فاصله‌ها، سن زمین حد اقل ۵ میلیارد سال است و این حد با حدسیات زمین شناسان در مورد سن زمین مطابقت دارد. همچنین تلسکوپهای جدید وجود خوشه‌های کهکشانی را نشان می‌دهد. کهکشان ما نیز ظاهرا جزیی از یک خوشه محلی است که شامل ابرهای ماژلان، کهکشان امرأة المسلسله و سه‌ها، کهکشان کوچک نزدیک آن و چند کهکشان کوچک دیگر هست که روی هم رفته نوزده عضو را تشکیل می‌دهند. اگر کهکشانها خوشه‌ها را و خوشه‌ها نیز خوشه‌های بزرگتری را تشکیل می‌دهند، آیا می‌توان گفت که جهان و به تبع آن فضا، تا بینهایت گسترده شده است؟ یا اینکه چرا برای جهان و چه برای فضا انتهایی وجود ندارد؟ در هر حال، دانشمندان با وجود اینکه با تخمین می‌توانند تا فاصله ۹ میلیارد سال نوری، چیزهایی را تشخیص دهند، ولی هنوز هم نشانه‌ای از پایان جهان پیدا نکرده‌اند. انقلاب علمی [ویرایش] نقشه‌های گالیله و مشاهدات او از ماه نشان داد که سطح ماه دارای کوه‌است.طی دوران رنسانس، نیکلاس کوپرنیک مدل خورشید محوری را برای سامانه خورشیدی (منظومه شمسی) پیشنهاد کرد. گالیلئو گالیله و ژوهانس کپلر پیشنهاد وی را بسط داده و آن را اصلاح کردند. گالیله تلسکوپ را اختراع کرد تا بتواند مشاهدات خود را به صورت دقیق تری انجام دهد. کپلر اولین کسی بود که با بیان اینکه خورشید در مرکز قرار دارد و بقیه سیاره‌ها به دور آن می‌چرخند مدل تقریباً کاملی را ارائه کرد. با این وجود کپلر نتوانست برای قوانینی که ارائه نمود نظریه‌ای تهیه کند. در نهایت ایزاک نیوتن با ارائه قوانین حرکت اجرام سماوی و قانون گرانش حرکت سیاره‌ها را توصیف کرد. نیوتن مخترع تلسکوپ انعکاسی است. کشفیات جدید باعث شد که ابعاد و کیفیت تلسکوپ بهبود بیابد. نیکلاس لوییس لاسیل نقشه‌های بیشتری از موقعیت ستارگان در فضا را ارائه نمود. ویلیام هرشل نقشه گسترده‌ای از خوشه‌های سماوی و تهیه کرد و در سال ۱۷۸۱ توانست سیاره اورانوس را کشف کند که اولین سیاره کشف شده توسط انسان محسوب می‌شود. در سال ۱۸۳۷ برای اولین بار فردریش بسل فاصله ستاره ۶۱ دجاجه را مشخص کرد. در قرن نوزدهم میلادی، توجه دانشمندانی چون لئونارد اولر، الکسیس کلاد کلایرات و جین دالمبرت به مسئله سه جسمی باعث شد پیش بینی‌های دقیق تری در مورد حرکت ماه و ستارگان انجام شود. ژوزف لوییس لاگرانژ و پیرسیمون لاپلاس این کار را تکمیل کردند و میزان انحراف اقمار و سیاره‌ها از وضعیت اصلی‌شان را تخمین زدند. با اختراع طیف نگار و عکاسی افق‌های جدیدی به روی اخترشناسی باز شد. در طی سال‌های ۱۸۱۴ و ۱۸۱۵ ژوزف وان فرانوفر در طیف نور خورشید حدود ۶۰۰ نوار را مشاهده کرد و در سال ۱۸۵۹، گوستاو کیرشهف این نوارها را به حضور عناصر مختلف در جو خورشید نسبت داد. معلوم شد که بقیه ستارگان به ستاره منظومه شمسی (خورشید) شباهت زیادی دارند اما در ابعاد مختلف و با دماها و عناصر درونی متفاوتی دیده می‌شوند . قرار داشتن زمین در کهکشان راه شیری، به عنوان مجموعه‌ای از ستاره‌ها و سیاره‌ها، در قرن بیستم کشف گردید و هم‌زمان وجود دیگر کهکشان‌های خارجی در فضا تأیید شد و بلافاصله پدیده انبساط عالم عامل اصلی وجود فاصله زیاد بین زمین و دیگر کهکشان‌ها اعلام شد. همچنین در اخترشناسی مدرن وجود اجرام خارجی زیادی مانند اختر نماها، و کهکشان‌های رادیویی را تأیید کرد و با استفاده از این مشاهدات نظریه‌های فیزیکی ارائه نمود که برخی از آنها این اجرام را براساس اجرام دیگر مانند ستاره‌های نوترونی و سیاه چاله‌ها توصیف می‌کنند. کیهان‌شناسی فیزیکی در طی قرن ۲۰ میلادی پیشرفتهای زیادی را تجربه کرد و نظریه مهبانگ (بیگ بنگ یا انفجار بزرگ) براساس شواهد کشف شده در علوم اخترشناسی و فیزیک مانند تشعشعات پس زمینه‌ای مایکرویو کیهانی، قانون هابل و تشکیل هسته مهبانگ قوت یافت. مشاهدات اخترشناسی [ویرایش] وری لارج ارای در نیو مکزیکو، نمونه‌ای از یک رادیو تلسکوپ. رادیو تلسکوپ‌ها یکی از ابزارهای مشاهده کیهان هستند که توسط اخترشناسان به کار می‌رونددر بابل و یونان باستان، اخترشناسی بیشتر اخترسنجی بود و موقعیت ستاره‌ها و سیاره‌ها در آسمان مورد توجه زیادی قرار داشت. بعدها، تلاش‌های اخترشناسانی چون آیزاک نیوتن و یوهانس کپلر علم مکانیک سماوی را پدید آورد و اخترسنجی بر پیش بینی حرکت آن دسته از اجرام سماوی که میانشان نیروی جاذبه گرانشی وجود داشت تمرکز یافت. این پیشرفت به طور خاص در مورد منظومه شمسی به کار گرفته شد. امروزه موقعیت و حرکت اجرام به آسانی تعیین می‌شود و اخترشناسی مدرن بر مشاهده و درک طبیعت فیزیکی اجرام سماوی تأکید دارد. روش‌های گردآوری داده [ویرایش]نوشتار اصلی: مشاهدات اخترشناسی ‎ در اخترشناسی، اطلاعات موجود براساس شناسایی و تحلیل نور و انواع دیگر تشعشات الکترومغناطیسی شکل می‌گیرد. انواع دیگر پرتوهای کیهانی نیز مورد بررسی قرار می‌گیرند و تحقیقاتی در حال انجام است تا در آینده نزدیک بتوانیم امواج جاذبه گرانشی را شناسایی و تحلیل کنیم. امروزه، آشکارسازهای نوترینو در مشاهده نوترینوهای خورشید و نوترینوهایی که از ابرنواخترها ساطع می‌شوند کاربرد زیادی دارند. [۲][۳] طیف الکترومغناطیسی می‌تواند اطلاعات زیادی راجع به اخترشناسی را در اختیارمان قرار دهد. در بخش‌هایی از طیف که فرکانس اندک است، اخترشناسی رادیویی، ساطع شدن امواجی با طول موجهای میلی متری و دکامتری را کشف می‌کند. گیرنده‌های رادیو تلسکوپی همانند گیرنده‌های رادیویی معمولی هستند اما حساسیت بسیار زیادی دارد. مایکرویوها بخش میلی متری طیف رادیویی را تشکیل می‌دهند و در مطالعات تشعشات مایکرویو پس زمینه کیهان کاربرد وسیعی دارند. در ستاره‌شناسی فروسرخ و ستاره‌شناسی فرافروسرخ با آشکارسازی و تحلیل امواج فروسرخ (با طول موجی بزرگ‌تر از طول موج قرمز) سروکار داریم. معمولاً برای این کار از تلسکوپ استفاده می‌شود اما در کنار آن به یک آشکارساز حساس نیز احتیاج داریم. بخارآب موجود در جو زمین امواج فروسرخ را جذب می‌کند و بنابراین مراکز مشاهده امواج فروسرخ می‌بایست در مکان‌های بلند و خشک و یا خارج از جو کره زمین ساخته شوند. تلسکوپ‌های فضایی به انتشار گرما در جو زمین، شفافیت جو زمین حساس نیستند و وقتی از آنها استفاده می‌کنیم دیگر با دردسرهای مشاهده در طول موج‌های فروسرخ روبرو نمی‌شویم. مشاهدات فروسرخ در مشاهده مناطقی از کهکشان که پوشیده از گرد و غبار هستند بسیار کارآمد هستند. تلسکوپ سوبارو (چپ) ورصدخانه کک (وسط) درماونا کیا، هر دو نموونه‌های از یک رصدخانه هستند که در طول موجهای نزدیک مادون قرمز و مرئی کار می‌کنند. تجهیزات تلسکوپ مادون قرمز ناسا(راست) نمونه‌ای از یک تلسکوپ است که رنها با طول موجهای نزدیک مادون قرمز کار می‌کند.در طول تاریخ، اغلب داده‌های اخترشناسی با استفاده از اخترشناسی نور تهیه شده‌اند. در اخترشناسی نور، با استفاده از عناصر نوری (مانند آینه، عدسی، آشکارسازهای CCD و فیلم‌های عکاسی) طول موج‌های نور را در محدوده فروسرخ تا فرابنفش بررسی می‌کنیم. نور مرئی (طول موج‌هایی که توسط چشم انسان دیده می‌شوند و در محدوده ۴۰۰ تا ۷۰۰ نانومتر قرار دارند) در میانه این محدوده قرار دارد. تلسکوپ مهم‌ترین ابزار مشاهدات اخترشناسی است که دارای طیف نگار و دوربین‌های الکترونیکی است. برای مشاهده منابع پرانرژی از اخترشناسی انرژی بالا کمک می‌گیریم که اخترشناسی اشعه X، اخترشناسی پرتو گاما، اخترشناسی فرابنفش (UV) و همچنین مطالعات مربوط به نوترینوها و پرتوهای کیهانی را شامل می‌شود. اخترشناسی رادیویی و نوری با استفاده از رصدخانه‌های زمینی انجام می‌شود زیرا در این طول موج‌ها، جو زمین به اندازه کافی شفاف است. جو زمین در طول موج‌های مورد مطالعه در اخترشناسی اشعه X، اخترشناسی پرتو گاما، اخترشناسی UV و اخترشناسی فرا فروسرخ (به جز در مورد چند «پنجره» طول موج) شفافیت کافی را ندارد و بنابراین تحقیقات و مشاهدات در مورد این علوم باید از طریق بالن‌های تحقیقاتی یا رصدخانه‌های فضایی صورت پذیرد. پرتوهای قوی اشعه گاما براساس رگبارهای هوایی عظیمی که تولید می‌کنند شناسایی می‌شوند و مطالعه پرتوهای کیهانی زیرمجموعه‌ای از اخترشناسی محسوب می‌شود. [۴] اخترشناسی سیارات براساس مشاهدات مستقیم از طریق فضاپیماها و سفرهای فضایی و نمونه برداری از سیارات پیشرفت خوبی را تجربه کرده‌است. مأموریت‌های فضایی و استفاده از سیاره‌پیماهای مجهز به حس‌گرهای قوی به ما کمک می‌کند از مواد تشکیل دهنده سطح سیاره نمونه برداری کنیم و همچنین با استفاده از حس‌گرها مواد لایه‌های عمیق تر را شناسایی کرده و در نهایت مواد را برای بررسی بیشتر به زمین منتقل کنیم. ستاره‌شناسی و مکانیک اجرام آسمانی [ویرایش]نوشتارهای اصلی: اخترشناسی و مکانیک اجرام آسمانی یکی از قدیمی‌ترین زمینه‌های تحقیقاتی در علم اخترشناسی و همه علوم عالم، اندازه گیری موقعیت و مکان اجرام سماوی در آسمان است. همواره در طول تاریخ، درک مناسب از موقعیت خورشید، ماه، ستارگان و سیارات در تعیین موقعیت افراد بر روی زمین (ملوانان و کشتی‌ها) نقش داشته‌است. اندازه گیری دقیق موقعیت مکانی سیارات به درک ما از نظریه انحراف وسعت داده و اکنون می‌توانیم در مورد گذشته و آینده سیارات با دقت زیاد اظهارنظر کنیم. علمی که به این مباحث می‌پردازد را علم مکانیک اجرام آسمانی گویند. امروزه با ردیابی اجرام آسمانی در نزدیکی زمین می‌توانیم احتمال برخورد این اجرام با یکدیگر یا جو زمین را بررسی کنیم.[۵] اندازه گیری میزان سرعت زاویه‌ای ستاره‌های نزدیک به کره زمین یکی از اساسی‌ترین کارها در تعیین نردبان فاصله کیهانی است که برای اندازه گیری مقیاس جهان طراحی شده‌است. اندازه گیری سرعت زاویه‌ای ستاره‌های مجاور عامل مهمی در آگاهی از ویژگی‌های ستاره‌های دور محسوب می‌شود چرا که این ویژگی‌ها قابل مقایسه هستند. محاسبه سرعت شعاعی و حرکت واقعی سینماتیک حرکت این مجموعه اجرام در کهکشان راه شیری را آشکار می‌سازد. همچنین از یافته‌های اخترشناسی در اندازه گیری توزیع ماده تیره در کهکشان استفاده می‌شود.[۶] در دهه ۱۹۹۰ (میلادی) روش اخترشناسی که در محاسبه تکانه‌های ستارگان به کار می‌رفت باعث کشف سیاره‌هایی از خارج از منظومه شمسی شد که به دور خورشید گردش می‌کنند. [۷] مطالعات میان‌رشته‌ای [ویرایش]اخترشناسی با بسیاری از رشته‌های علمی مهم ارتباط تنگاتنگ دارد. برخی از این علوم عبارت‌اند از: فیزیک کیهانی: مطالعه فیزیک جهان پیرامون شامل ویژگیهای فیزیکی (درخشندگی، چگالی، دما و ترکیب شیمیایی) اجرام آسمانی. بیولوژی کیهانی: مطالعه پیدایش و تکامل سیستم‌های بیولوژیکی در دنیا. اخترشناسی باستانی: مطالعه اخترشناسی قدیم در بافت فرهنگی آن با استفاده از مشاهدات باستان‌شناسی و مردم‌شناسی. شیمی کیهانی: مطالعه مواد شیمیایی موجود در فضا به خصوص ابرهای گازی مولکولی و نحوه تشکیل، تعامل و مرگ آنها. بنابراین این رشته با رشته‌های شیمی و اخترشناسی مباحث مشترکی دارد. پدیده‌های آسمانی [ویرایش]پدیده‌های آسمانی موضوعات اخترشناسی را تشکیل میدهد و بطور عمده شامل: ستاره سحابی سیاره سیارک قمر ستاره دنباله دار شهابواره شهاب‌سنگ اخترشناسی خورشید [ویرایش]نوشتار اصلی: خورشید تصویر ماورا بنفش از فتوسفرهای فعال خورشید که توسط تلسکوپ فضایی تریس (TRACE) گرفته شده‌است. (تصویر از ناسا). غروب خورشید در مریخخورشید ستاره‌ای است که بیشترین تحقیقات علمی بر روی آن تمرکز یافته‌است. خورشید یکی از توالی‌های اصلی ستاره‌های کوتوله طبقه ستارگان G2V است که حدود ۶/۴ میلیارد سال عمر دارد. خورشید ستاره‌ای متغیر نیست اما در چرخه فعالیت آن تغییرات متناوبی صورت می‌گیرد که به حلقه نقطه‌ای خورشیدی معروف است. در واقع در هر ۱۱ سال در تعداد لکه‌های خورشیدی نوساناتی رخ می‌دهد. لکه هایخورشیدی نواحی هستند که در آنها دما کمتر از دمای میانگین خورشید است و فعالیت‌های مغناطیسی شدیدی در این مکان‌ها رخ می‌دهد. [۸] میزان درخشندگی خورشید با افزایش عمر آن افزایش یافته‌است و از زمانی که به یک ستاره توالی اصلی تبدیل شد تاکنون به درخشندگی آن ۴۰ درصد افزوده شده‌است. همچنین در درخشندگی خورشید تغییراتی ایجاد می‌شود که اثرات قابل ملاحظه‌ای بر کره زمین دارد. کمینه ماندر، باعث ایجاد پدیده عصر یخبندان کوچک در قرون وسطی شده‌است. [۹] سطح خارجی خورشید را نورسپهر گویند. در قسمت بالایی این لایه منطقه‌ای با نام کروموسفر قرار دارد. این ناحیه هم توسط یک ناحیه گذرا که دمای آن به سرعت افزایش می‌یابد احاطه شده و در نهایت تاج‌های بسیار داغ و گدازنده خورشید قرار دارند. در مرکز خورشید، دما و فشار کافی برای وقوع پدیده جوش هسته‌ای وجود دارد. در بالای این هسته، ناحیه‌ای به نام ناحیه تشعشع قرار دارد که در آن ماده پلاسما انرژی را با استفاده از تشعشات منتقل می‌کند. لایه بعدی ناحیه همرفت است که در آن ماده گازی شکل انرژی را با استفاده از جابجایی فیزیکی گاز منتقل می‌کند. گفته می‌شود این ناحیه همرفت عامل ایجاد نقاط خورشیدی هستند که در این نقاط فعالیت مغناطیسی شدیدی را ملاحظه می‌کنیم .[۸] دانش سیارات [ویرایش]نوشتار اصلی: علم سیارات‎ این رشته اخترشناسی مجموعه سیارات، اقمار طبیعی، سیارات کوتوله، ستارگان دنباله‌دار، شبه ستارگان و دیگر اجرام سماوی که به دور خورشید می‌چرخند و همچنین سیارات خارج از سلطه خورشید را بررسی می‌کند. منظومه شمسی با استفاده از تلسکوپ‌ها و در نهایت سفینه‌های فضایی به خوبی مورد مطالعه قرار گرفته‌است. این اطلاعات بدست آمده منبع خوبی برای درک بهتر از نحوه پیدایش و تکامل این منظومه سیارات محسوب می‌شود اما هنوز باید تحقیقات را به طور گسترده ادامه دهیم. [۱۰] نقطه سیاه رنگی که در بالای تصویر دیده می‌شود یک گردباد است که دیواره‌ای متحرک را در سطح مریخ ایجاد کرده‌است. این ستون متحرک و چرخان جو مریخ (که با گردبادهای زمینی (تورنادوها) قابل مقایسه‌است) نوار طولانی و سیاه رنگی را به وجود آورده‌است.منظومه شمسی از سیارات داخلی، کمربند شبه ستاره و سیارات خارجی تشکیل شده‌است. سیارات خاکی عبارت‌اند از: تیر، زهره، زمین و مریخ. سیارات ابرگاز خارجی عبارت‌اند از: مشتری، زحل، اورانوس و نپتون. [۱۱] این سیارات از یک صفحه دیسک مانند سیاره‌ای بدوی تشکیل شده‌اند که در اطراف خورشید قرار داشته‌است. به علت وجود جاذبه، برخورد و اتحاد، دیسک مجموعه‌ای‌هایی از ماده تبدیل شد که همان سیارات بدوی بودند. سپس فشار تشعشعات طوفان‌های خورشیدی بخش اعظم ماده را به حاشیه راند و تنها سیاراتی که از جرم کافی برخوردار بودند در جو گازی باقی ماندند. این سیارات در طی دورانی که در آن بمباران‌های شدیدی صورت می‌گرفت، و از شواهد آن می‌توان به دره‌های ناشی از بمباران در سطح ماه اشاره کرد، مواد موجود در اطراف خود را جذب یا آنها را دور ساختند. در طی این دوران احتمالاً برخی از سیارات بدوی با یکدیگر برخورد کردند و برای مثال نظریه برخورد بزرگ نحوه شکل گیری ماه را تشریح می‌کند. [۱۲] وقتی سیاره به جرم مورد نظر و مناسب دست پیدا می‌کند، در طی پدیده تفکیک سیاره‌ای، مواد با چگالی مختلف در داخل سیاره پخش می‌شوند. در طی این فرآیند یک هسته سنگی یا فلزی تشکیل شده و اطراف آن را مواد مختلف احاطه می‌کنند. هسته می‌تواند حاوی مواد جامد یا مایع باشد و برخی از هسته‌های سیارات دارای میدان مغناطیسی مخصوص به خودهستند که جوآنها را از طوفان‌های خورشیدی مصون نگاه می‌دارد .[۱۳] گرمای داخلی ماه یا سیاره براثر برخورد مواد رادیواکتیو (مانند اورانیوم و توریم و۲۶Al ) و یا گرمای ناشی از مد تولید می‌شود. دربرخی از سیارات واقمار آنهاگرمای کافی برای وقوع پدیده‌هایی مانند آتشفشان و تکتونیک وجود دارد . سطح سیاراتی که دارای جو هستند دراثر حرکت آب وباد دچار فرسودگی می‌شود. اجرام کوچک‌تر که از گرمای ناشی از مد بهره مند نیستند به سرعت سرد می‌شوند واغلب فعالیت‌های عادی شان متوقف می‌شود. [۱۴] اخترشناسی ستارگان (ستاره شناسی) [ویرایش]نوشتار اصلی: ستاره سحابی سیاره‌ای مورچه. دفع گاز از ستاره مرکزی در حال مرگ برخلاف الگوهای بی نظم انفجارات معمولی الگوهای متقارن نشان می‌هد.مطالعه ستارگان و تکامل ستارگان در درک بهتر از نحوه تکامل عالم بسیار مفید است .درک اختر فیزیک ستارگان با مشاهدات فضایی، درک نظریات مختلف و شبیه سازی کامپیوتری امکان پذیر است . فرایند شکل گیری ستارگان درمحل‌هایی که حاوی گرد و غبارغلیظ هستند وبه ابرهای مولکولی عظیم یا سحابی سیاه شهرت دارند رخ می‌دهد. تکه ابرها درحالت ناپایداری وتحت تأثیر جاذبه ستارگان اولیه را تشکیل می‌دهند. براثر پدیده جوش هسته‌ای یک هسته داغ وبه اندازه کافی چگال تشکیل شده و درنهایت به یک ستاره توالی اصلی تبدیل می‌شود. [۱۵] ویژگی‌های ستاره‌ای که به وجود آمده‌است به جرم اولیه ستاره بستگی دارد . هرچه جرم اولیه بیشتر بوده باشد، درخشندگی ستاره و سرعت مصرف سوخت هیدروژن در هسته آن بیشتر است . با گذشت زمان سوخت هسته بیشتری نیاز است و بنابراین هسته حجیم تر و چگال تر می‌شود. درنتیجه این واکنش‌ها یک غول قرمز تولید می‌شود که تا زمان مصرف شدن همه سوخت هلیم عمر می‌کند. ستاره‌های بزرگ در فرایندهای جوش هسته‌ای از عناصر سنگین تر هم استفاده می‌کنند و فازهای تکاملی دیگری به این فازها اضافه می‌شود. سرنوشت ستاره به جرم آن بستگی دارد و ستارگانی که جرم آنها بیش از ۴/۱ برابر جرم خورشید است به ابرنواختر تبدیل می‌شوند درحالیکه ستارگان کوچک‌تر به سحابی‌های سیاره‌ای ودرنهایت به کوتوله‌های سفید تبدیل می‌شوند. جسم باقی مانده از ابرنواختر یک ستاره نوترونی چگال است واگر جرم ستاره بیش از سه برابر جرم خورشید باشد ابرنواختر به یک سیاه چاله تبدیل می‌شود. [۱۶] اخترشناسی کیهانی [ویرایش]نوشتار اصلی: اخترشناسی کیهانی‎ ساختار رصد شده بازوهای مارپیچی کهکشان راه شیری.منظومه شمسی درون کهکشان راه شیری درحال چرخش است که کهکشانی مارپیچی و بسته‌است که یکی از اعضای اصلی کهکشان‌های Local Group محسوب می‌شود. منظومه شمسی مجموعه‌ای از گاز، غبار، ستارگان و دیگر اجرام است که نیروی جاذبه آنها را درکنار هم قرار داده‌است. ازآنجا که زمین در بازوی خارجی پرگرد وغبار کهکشان راه شیری قرار دارد بخش عظیمی از این کهکشان از دیده‌مان پنهان است. درمرکز کهکشان راه شیری یک برآمدگی میله مانند قرار دارد که گمان می‌رود یک سیاه چاله بسیار بزرگ باشد در اطراف هسته چهار بازوی مارپیچ قرار دارند. دراین ناحیه بسیاری از ستارگان شکل می‌گیرند و مملو از ستارگان جوان و نسل دوم ستارگان است . دراطراف دیسک، یک شبه کره کهکشانی مسن تر که نسل اول ستارگان محسوب می‌شوند و همچنین مجموعه‌ای از خوشه‌های دایره‌ای نسبتاً چگال قرار دارد. [۱۷][۱۸] درمیان ستارگان یک واسط بین ستاره‌ای قرار دارد که ناحیه‌ای است حاوی مواد پراکنده. درچگال‌ترین قسمت، ابرهای مولکولی از جنس هیدروژن ودیگر عناصر نواحی تشکیل ستاره را تشکیل می‌دهند. سحابی‌های تیره نامنظم (که در محدوده‌ای که توسط طول جینز مشخص می‌شود تمرکز یافته‌اند) ستارگان نوزاد فشرده را تشکیل می‌دهند.[۱۹] با تشکیل ستارگان با جرم زیادتر ابر تبدیل به ناحیه HII می‌شود که درآن گازهای درخشنده و پلاسما قراردارند. طوفان‌های ستاره‌ای و انفجار ابرنواخترها باعث پراکنده شدن ابر می‌شوند و درنهایت یک یا چند خوشه باز از ستارگان تشکیل می‌شوند. این خوشه‌ها در کنار هم کهکشان راه شیری را تشکیل داده‌اند . مطالعات سینماتیک ماده درکهکشان راه شیری و دیگر کهکشان‌ها نشان می‌دهد که جرم نامرئی درآنها بیش از جرم مرئی است بیشتر جرم کهکشان را هاله‌های سیاه تشکیل می‌دهند طبیعت این ماده سیاه رنگ هنوز برای دانشمندان نامشخص است .[۲۰] کهکشان‌ها وخوشه‌ها [ویرایش]نوشتار اصلی: اخترشناسی فراکهکشانی مطالعه اجرامی که درخارج از کهکشان راه شیری قرار دارند به یک علم جدید تبدیل شده که شاخه‌ای از اخترشناسی محسوب می‌شود. دراین علم نحوه پیدایش و تکامل کهکشان‌ها، ساختار و طبقه بندی آنها، کهکشان‌های فعال وگروه‌ها و خوشه‌های کهکشانی مورد بررسی قرار می‌گیرند . بررسی گروه‌ها وخوشه‌های کهکشانی در درک بهتر از ساختار کلی کیهان نقش مهمی ایفا می‌کند. دراین شکل چندین جرم حلقه مانند آبی رنگ رامشاهده می‌کنید که تصاویر همان کهکشان هستند که با استفاده از اثر عدسی‌های گرانشی از خوشه کهکشان زرد رنگ در وسط عکس کپی برداری شده‌اند. این عدسی‌ها با استفاده از میزان گرانش خوشه نور را خم کرده و تصویر اجرام دورتر را بزرگنمایی نموده و درآنها اعوجاج ایجاد می‌کند.اغلب کهکشان‌ها دارای شکل منحصر به فردی هستند که طبقه بندی آنها را آسان می‌کند. به طورکلی کهکشان‌ها به انواع مارپیچ، بیضوی، و نامنظم تقسیم بندی می‌شوند.[۲۱] همانطورکه از نام کهکشان بیضوی پیداست سطح مقطع این کهکشان بیضی شکل است . ستارگان در مدارهای تصادفی به دور کهکشان می‌چرخند. دراین کهکشان‌ها غبار میان ستاره‌ای وجود ندارد و یا به ندرت یافت می‌شود و نقاط تولید ستاره دراین نوع کهکشان بسیار کم هستند. ستارگان این کهکشان عموماً مسن هستند کهکشان بیضوی عموماً درمرکز خوشه‌های کهکشانی یافت می‌شوند و ممکن است در اثر ترکیب کهکشان بزرگ به‌وجود آیند. کهکشان مارپیچ معمولاً از یک صفحه دوار مسطح تشکیل شده که یک برآمدگی میله مانند در مرکز آن قرار دارد و بازوهای نورانی مارپیچی از آن خارج می‌شوند. این بازوها نواحی پر گرد و غباری هستند که درناحیه تولید ستاره قرار دارند و این مناطق ستاره‌های جوان بسیار بزرگ رنگ آبی را در برابر دیدگان‌مان قرار می‌دهند. کهکشان‌های مارپیچ با هاله‌ای از ستاره‌های پیر احاطه شده‌اند. کهکشان‌های راه شیری و آندرومدا کهکشان‌های مارپیچ هستند. شکل ظاهری کهکشان‌های نامنظم درهم پیچیده‌است واین نوع از کهکشان در دسته‌بندی بیضوی و مارپیچ جای نمی‌گیرند. حدود یک چهارم کهکشان‌ها نامنظم هستند و شکل نامنظم آنها ناشی از تعامل گرانشی با محیط اطراف است. کهکشان فعال کهکشان‌هایی هستند که عمده انرژی که از آنها ساطع می‌شود از منبعی به جز ستارگان و گرد و غبار تامین می‌شود. درمرکز این کهکشان‌ها هسته‌ای فشرده قرار دارد که گفته می‌شود یک سیاه چاله بسیار عظیم است که به علت جذب اجرام انرژی زیادی را تولید می‌کند. کهکشان رادیویی نوعی کهشکان فعال است که در بخش رادیویی طیف بسیار درخشان بوده و زبانه‌های پرانرژی گاز را متساعد می‌کند. از میان کهکشان‌های فعالی که تشعشات پرانرژی ساطع می‌کنند می‌توان به کهکشان‌های سیفرت، اخترنماها و بلازارها اشاره کرد . گفته می‌شود که اختر نماها درخشنده‌ترین اشیا عالم هستند. [۲۲] ساختار عظیم کیهان بر اساس گروه‌ها و خوشه‌های کهکشانی شکل گرفته‌است. دراین ساختار بزرگ‌ترین واحد کیهانی ابرخوشه‌ها هستند. مجموعه مواد به فیلامان‌ها و دیواره‌های کهکشانی تبدیل می‌شوند ودر میان آنها فضاهای خالی باقی می‌ماند. [۲۳] کیهان‌شناسی [ویرایش]نوشتار اصلی: کیهان شناسی فیزیکی مشاهده ساختار عظیم عالم در علم کیهان شناسی فیزیکی مطرح می‌شود و گام موثری در درک بهتر پیدایش وتکامل کیهان محسوب می‌شود. درکیهان‌شناسی مدرن نظریه انفجار بزرگ مورد پذیرش قرار گرفته و اعلام شده که دربرهه‌ای از زمان انفجار بزرگ رخ داده با انبساط فضا درطول ۷/۱۳ گیگا سال جهان به شکل فعلی آن مبدل شده‌است . مفهوم انفجار بزرگ با کشف تشعشات مایکرویو پس زمینه کیهان درسال ۱۹۶۵ مطرح شد . در طول مدت تکامل جهان چندین مرحله تکاملی را تجربه کرد . در ابتدا جهان به سرعت انبساطی کیهانی را تجربه کرد که شرایط اولیه را همگن کرد . سپس با تشکیل هسته انفجار بزرگ عناصر اولیه جهان آغازین تولید شدند. هنگامی که اولین اتم‌های تشکیل دهنده فضا شفاف شدند توانستند امواجی را از خود ساطع کنند امواجی که امروزه به صورت تشعشات مایکرویو پس زمینه کیهان مشهور هستندسپس جهان درحال انبساط به علت عدم وجود منابع انرژی کیهانی وارد عصر تیره و تار خود شد. [۲۴] با وقوع تغییرات اندک در چگالی اجرام، ساختار سلسله مراتبی ماده شکل گرفت . موادی که در نواحی چگال جمع شده بودند ابرهای گاز و ستارگان اولیه را تشکیل دادند. این ستاره‌های عظیم باعث ایجاد مجدد فرایند یونیزاسیون شده و بسیاری از عناصر سنگین جهان آغازین را به وجود آوردند. توده‌های گرانشی به فیلامان تبدیل شده و فضایی بین این فیلامان‌ها به صورت خالی باقی ماند. به تدریج گرد وغبار با یکدیگر ترکیب شده واولین کهکشان‌ها به وجود آمدند. باگذشت زمان این کهکشان‌ها مواد بیشتری را به درون خود کشیدند و گروه‌ها و خوشه‌های کهکشانی و درنهایت ابرخوشه‌های عظیم شکل گرفتند. [۲۵] یکی از مفاهیم اصلی در ساختار عالم، ماده تاریک یا انرژی تاریک است. ماده تاریک عنصر اصلی تشکیل دهنده دنیاست و ۹۶درصد چگالی جهان را تشکیل می‌دهد.امروزه تلاش زیادی برای درک فیزیک این ماده واجزا تشکیل دهنده آن صورت می‌گیرد . [۲۶] اخترشناسی غیر حرفه‌ای (آماتوری) [ویرایش]نوشتار اصلی: اخترشناس آماتور به طور کلی اخترشناسان آماتور با استفاده از تلسکوپ‌های ساخت خودشان بسیاری از پدیده‌های کیهانی واجرام سماوی را مشاهده می‌کنند. آنها بیشتر به دنبال رصد کردن ماه، سیارات، ستارگان، دنباله دارها، باران‌های شهابی وبسیاری از اجرام موجود درعمق فضا مانند خوشه‌های ستاره‌ای، کهکشان‌ها وسحابی‌ها هستند. یکی از شاخه‌های اخترشناسی آماتوری، عکس برداری کیهانی است که طی آن فرد آماتور از آسمان شب عسکبرداری می‌کند. بسیاری از افراد آماتور تلاش می‌کنند درمشاهده اجرام خاص تبحر لازم را کسب کنند و با توجه به علاقه فردی خود کار مشاهده خود را تخصصی ترکنند.[۲۷][۲۸] اغلب آماتورها مشاهدات خود را در طول موج‌های مرئی انجام می‌دهند و تعداد محدودی هم این کار را درمورد طول موج‌های نامرئی تجربه می‌کنند. آنها در تلسکوپ خود از فیلترهای فروسرخ استفاده می‌کنند ویا از تلسکوپ‌های رادیویی کمک می‌گیرند . کارل گوته یانسکی یکی از پیشگامان اخترشناسی رادیویی آماتوری است که در دهه ۱۹۳۰ آسمان را در طول موج‌های رادیویی مشاهده کرد .تعدادی از افراد آماتور از تلسکوپهای دست ساز یا تلسکوپ‌های رادیویی که برای تحقیقات اخترشناسی ساخته می‌شوند ودراختیار افراد آماتور قرار می‌گیرند استفاده می‌کنند. ("مثلاً " تلسکوپ یک مایلی ). [۲۹][۳۰] اخترشناسان آماتور در پیشرفت‌های علم اخترشناسی سهم بسزایی داشته‌اند . این رشته یکی از معدود رشته‌هایی است که در آن افراد آماتور ایفای نقش می‌کنند. آنها می‌توانند دربرخی اندازه گیری‌ها شرکت کرده و در اصلاح مدار سیارات کوچک مفید واقع شوند. همچنین افراد آماتور درکشف دنباله دارها و رصد ستاره‌های متغیر نقش بسزایی دارند . پیشرفت‌های حاصل شده در زمینه تکنولوژی دیجیتال به افراد آماتور اجازه می‌دهد تا در رشته عسکبرداری کیهانی به موفقیت‌های چشمگیری دست پیدا کنند. [۳۱][۳۲][۳۳] پرسش‌های بنیادین در اخترشناسی [ویرایش]اگرچه دررشته اخترشناسی تلاش‌های بسیاری برای درک بهتر طبیعت جهان ومحتوای آن صورت گرفته‌است اما هنوز سوالهای بی پاسخی در پیش رویمان قرار دارند شاید پاسخگویی به این سوالات مستلزم ساخت ابزارهای رصد جدید و پیشرفت‌های تازه در زمینه فیزیک نظریه و تجربی باشد. آیا سیارات خاکی در اطراف بقیه ستارگان (به جز خورشید) هم قرار دارند ؟ اخترشناسان از وجود ستارگان بزرگ واجرامی در اطراف ستاره‌ها اطمینان حاصل کرده‌اند . بنابراین وجود سیارات خاکی کوچک‌تر محتمل به نظر می‌رسد . [۳۴] آیا در بقیه نقاط عالم حیات فرازمینی وجود دارد ؟ به طور خاص آیا انسان درکره‌های دیگر هم زندگی می‌کند؟ دراین صورت چگونه تناقض فرمی ( Fermi ) را توجیه می‌کنید ؟ وجود حیات درخارج از کره خاکی تبلیغات علمی و فلسفی بسیار مهمی را درپی دارد .[۳۵][۳۶] جنس ماده تاریک و انرژی تاریک از چیست ؟ شناخت این مساله در درک تکامل عامل و سرنوشت آن بسیار مفیداست اما هنوز درباره آن چیزی نمی‌دانیم. [۳۷] چرا دنیا به وجود آمد ؟ چرا برای مثال ثابت‌های فیزیکی با دقت تنظیم شده‌اند تا وجود حیات را تضمین کنند؟ چه چیزی باعث انبساط کیهانی شد و دنیا را همگن کرد ؟ [۳۸]
شنبه 6 اسفند 1390برچسب:, :: 19:45 :: نويسنده : امیر محمد توده زارع

صفحه قبل 1 صفحه بعد

درباره وبلاگ

به وبلاگ من خوش آمدید
آخرین مطالب
آرشيو وبلاگ
پيوندها

تبادل لینک هوشمند
برای تبادل لینک  ابتدا ما را با عنوان نجوم و آدرس amirmoon.LXB.ir لینک نمایید سپس مشخصات لینک خود را در زیر نوشته . در صورت وجود لینک ما در سایت شما لینکتان به طور خودکار در سایت ما قرار میگیرد.







ورود اعضا:


نام :
وب :
پیام :
2+2=:
(Refresh)

<-PollName->

<-PollItems->

خبرنامه وب سایت:

برای ثبت نام در خبرنامه ایمیل خود را وارد نمایید




آمار وب سایت:
 

بازدید امروز : 1
بازدید دیروز : 0
بازدید هفته : 2
بازدید ماه : 40
بازدید کل : 5922
تعداد مطالب : 3
تعداد نظرات : 0
تعداد آنلاین : 1

Alternative content